AQA Maths M2

Topic Questions from Papers

Differential Equations

1 A car, of mass 1600 kg , is travelling along a straight horizontal road at a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ when the driving force is removed. The car then freewheels and experiences a resistance force. The resistance force has magnitude $40 v$ newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of the car after it has been freewheeling for t seconds.

Find an expression for v in terms of t.

2 A particle of mass 20 kg moves along a straight horizontal line. At time t seconds the velocity of the particle is $v \mathrm{~m} \mathrm{~s}^{-1}$. A resistance force of magnitude $10 \sqrt{v}$ newtons acts on the particle while it is moving. At time $t=0$ the velocity of the particle is $25 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Show that, at time t

$$
v=\left(\frac{20-t}{4}\right)^{2}
$$

(b) State the value of t when the particle comes to rest.

3 A motorcycle has a maximum power of 72 kilowatts. The motorcycle and its rider are travelling along a straight horizontal road. When they are moving at a speed of $V \mathrm{~m} \mathrm{~s}^{-1}$, they experience a total resistance force of magnitude $k V$ newtons, where k is a constant.
(a) The maximum speed of the motorcycle and its rider is $60 \mathrm{~m} \mathrm{~s}^{-1}$.

Show that $k=20$.
(b) When the motorcycle is travelling at $20 \mathrm{~m} \mathrm{~s}^{-1}$, the rider allows the motorcycle to freewheel so that the only horizontal force acting is the resistance force. When the motorcycle has been freewheeling for t seconds, its speed is $v \mathrm{~m} \mathrm{~s}^{-1}$ and the magnitude of the resistance force is $20 v$ newtons.

The mass of the motorcycle and its rider is 500 kg .
(i) Show that $\frac{\mathrm{d} v}{\mathrm{~d} t}=-\frac{v}{25}$.
(ii) Hence find the time that it takes for the speed of the motorcycle to reduce from $20 \mathrm{~m} \mathrm{~s}^{-1}$ to $10 \mathrm{~m} \mathrm{~s}^{-1}$.

4 A stone of mass m is moving along the smooth horizontal floor of a tank which is filled with a viscous liquid. At time t, the stone has speed v. As the stone moves, it experiences a resistance force of magnitude $\lambda m v$, where λ is a constant.
(a) Show that

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=-\lambda v
$$

(2 marks)
(b) The initial speed of the stone is U.

Show that

$$
v=U \mathrm{e}^{-\lambda t}
$$

5 A car of mass 600 kg is driven along a straight horizontal road. The resistance to motion of the car is $k v^{2}$ newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the car at time t seconds and k is a constant.
(a) When the engine of the car has power 8 kW , show that the equation of motion of the car is

$$
\begin{equation*}
600 \frac{\mathrm{~d} v}{\mathrm{~d} t}-\frac{8000}{v}+k v^{2}=0 \tag{4marks}
\end{equation*}
$$

(b) When the velocity of the car is $20 \mathrm{~m} \mathrm{~s}^{-1}$, the engine is turned off.
(i) Show that the equation of motion of the car now becomes

$$
\begin{equation*}
600 \frac{\mathrm{~d} v}{\mathrm{~d} t}=-k v^{2} \tag{1mark}
\end{equation*}
$$

(ii) Find, in terms of k, the time taken for the velocity of the car to drop to $10 \mathrm{~m} \mathrm{~s}^{-1}$.

6 A car, of mass m, is moving along a straight smooth horizontal road. At time t, the car has speed v. As the car moves, it experiences a resistance force of magnitude 0.05 mv . No other horizontal force acts on the car.
(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=-0.05 v \tag{lmark}
\end{equation*}
$$

(b) When $t=0$, the speed of the car is $20 \mathrm{~m} \mathrm{~s}^{-1}$.

Show that $v=20 \mathrm{e}^{-0.05 t}$. (4 marks)
(c) Find the time taken for the speed of the car to reduce to $10 \mathrm{~m} \mathrm{~s}^{-1}$.

7 A stone, of mass 0.05 kg , is moving along the smooth horizontal floor of a tank, which is filled with oil. At time t, the stone has speed v. As the stone moves, it experiences a resistance force of magnitude $0.08 v^{2}$.
(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=-1.6 v^{2} \tag{2marks}
\end{equation*}
$$

(b) The initial speed of the stone is $3 \mathrm{~m} \mathrm{~s}^{-1}$.

Show that

$$
v=\frac{15}{5+24 t}
$$

8 A stone, of mass m, is moving in a straight line along smooth horizontal ground.
At time t, the stone has speed v. As the stone moves, it experiences a total resistance force of magnitude $\lambda m v^{\frac{3}{2}}$, where λ is a constant. No other horizontal force acts on the stone.
(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=-\lambda v^{\frac{3}{2}} \tag{2marks}
\end{equation*}
$$

(b) The initial speed of the stone is $9 \mathrm{~m} \mathrm{~s}^{-1}$.

Show that

$$
v=\frac{36}{(2+3 \lambda t)^{2}}
$$

(c) Find, in terms of λ, the time taken for the speed of the stone to drop to $4 \mathrm{~m} \mathrm{~s}^{-1}$.

9 A golf ball, of mass $m \mathrm{~kg}$, is moving in a straight line across smooth horizontal ground. At time t seconds, the golf ball has speed $v \mathrm{~m} \mathrm{~s}^{-1}$. As the golf ball moves, it experiences a resistance force of magnitude $0.2 m v^{\frac{1}{2}}$ newtons until it comes to rest. No other horizontal force acts on the golf ball.

Model the golf ball as a particle.
(a) Show that

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=-0.2 v^{\frac{1}{2}}
$$

(b) When $t=0$, the speed of the golf ball is $16 \mathrm{~m} \mathrm{~s}^{-1}$.

Show that $v=(4-0.1 t)^{2}$.
(c) Find the value of t when $v=1$.
(d) Find the distance travelled by the golf ball as its speed decreases from $16 \mathrm{~m} \mathrm{~s}^{-1}$ to $1 \mathrm{~m} \mathrm{~s}^{-1}$.

10 A particle is moving along a straight line. At time t, the velocity of the particle is v. The acceleration of the particle throughout the motion is $-\frac{\lambda}{v^{\frac{1}{4}}}$, where λ is a positive constant. The velocity of the particle is u when $t=0$.

Find v in terms of u, λ and t.
(Q5, June 2010)

11 Vicky has mass 65 kg and is skydiving. She steps out of a helicopter and falls vertically. She then waits a short period of time before opening her parachute. The parachute opens at time $t=0$ when her speed is $19.6 \mathrm{~m} \mathrm{~s}^{-1}$, and she then experiences an air resistance force of magnitude $260 v$ newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is her speed at time t seconds.
(a) When $t>0$:
(i) show that the resultant downward force acting on Vicky is

$$
65(9.8-4 v) \text { newtons }
$$

(ii) show that $\frac{\mathrm{d} v}{\mathrm{~d} t}=-4(v-2.45)$.
(2 marks)
(b) By showing that $\int \frac{1}{v-2.45} \mathrm{~d} v=-\int 4 \mathrm{~d} t$, find v in terms of t.

12 A car, of mass $m \mathrm{~kg}$, is moving along a straight horizontal road. At time t seconds, the car has speed $v \mathrm{~m} \mathrm{~s}^{-1}$. As the car moves, it experiences a resistance force of magnitude $2 m v^{\frac{5}{4}}$ newtons. No other horizontal force acts on the car.
(a) Show that

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=-2 v^{\frac{5}{4}}
$$

(b) The initial speed of the car is $16 \mathrm{~m} \mathrm{~s}^{-1}$.

Show that

$$
v=\left(\frac{2}{t+1}\right)^{4}
$$

(Q6, June 2011)

13 Alice places a toy, of mass 0.4 kg , on a slope. The toy is set in motion with an initial velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$ down the slope. The resultant force acting on the toy is $(2-4 v)$ newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the toy's velocity at time t seconds after it is set in motion.
(a) Show that $\frac{\mathrm{d} v}{\mathrm{~d} t}=-10(v-0.5)$.
(b) By using $\int \frac{1}{v-0.5} \mathrm{~d} v=-\int 10 \mathrm{~d} t$, find v in terms of t.
(c) Find the time taken for the toy's velocity to reduce to $0.55 \mathrm{~m} \mathrm{~s}^{-1}$.

A stone, of mass 5 kg , is projected vertically downwards, in a viscous liquid, with an initial speed of $7 \mathrm{~m} \mathrm{~s}^{-1}$.

At time t seconds after it is projected, the stone has speed $v \mathrm{~m} \mathrm{~s}^{-1}$ and it experiences a resistance force of magnitude $9.8 v$ newtons.
(a) When $t \geqslant 0$, show that

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=-1.96(v-5) \tag{2marks}
\end{equation*}
$$

(b) Find v in terms of t.

15 A particle, of mass 12 kg , is moving along a straight horizontal line. At time t seconds, the particle has speed $v \mathrm{~m} \mathrm{~s}^{-1}$. As the particle moves, it experiences a resistance force of magnitude $4 v^{\frac{1}{3}}$. No other horizontal force acts on the particle.

The initial speed of the particle is $8 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Show that

$$
v=\left(4-\frac{2}{9} t\right)^{\frac{3}{2}}
$$

(b) Find the value of t when the particle comes to rest.

16 A car accelerates from rest along a straight horizontal road.
The car's engine produces a constant horizontal force of magnitude 4000 N .
At time t seconds, the speed of the car is $v \mathrm{~m} \mathrm{~s}^{-1}$, and a resistance force of magnitude $40 v$ newtons acts upon the car.

The mass of the car is 1600 kg .
(a) Show that $\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{100-v}{40}$.
(b) Find the velocity of the car at time t.

